Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Chem Biol Drug Des ; 100(5): 699-721, 2022 11.
Article in English | MEDLINE | ID: covidwho-2001616

ABSTRACT

Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Computers , Drug Design , Drug Discovery/methods , Humans , Molecular Docking Simulation
2.
Biomolecules ; 11(11)2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523862

ABSTRACT

Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.


Subject(s)
COVID-19/diagnosis , Metal-Organic Frameworks/chemistry , Porphyrins/chemistry , Animals , COVID-19 Testing , CRISPR-Cas Systems , DNA, Single-Stranded , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Hydrogen Bonding , Limit of Detection , Nanocomposites , Nanostructures , Nitrogen/chemistry , PC12 Cells , Porosity , RNA, Guide, Kinetoplastida , RNA, Viral/metabolism , Rats , SARS-CoV-2 , Sensitivity and Specificity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL